On Stable Equivalences of Morita Type for Finite Dimensional Algebras

نویسنده

  • YUMING LIU
چکیده

In this paper, we assume that algebras are finite dimensional algebras with 1 over a fixed field k and modules over an algebra are finitely generated left unitary modules. Let A and B be two algebras (where k is a splitting field for A and B) with no semisimple summands. If two bimodules AMB and BNA induce a stable equivalence of Morita type between A and B, and if N⊗A− maps any simple A-module to a simple B-module, then N⊗A− is a Morita equivalence. This conclusion generalizes Linckelmann’s result for selfinjective algebras. Our proof here is based on the construction of almost split sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Construction of Stable Equivalences of Morita Type for Finite-dimensional Algebras I

In the representation theory of finite groups, the stable equivalence of Morita type plays an important role. For general finite-dimensional algebras, this notion is still of particular interest. However, except for the class of self-injective algebras, one does not know much on the existence of such equivalences between two finite-dimensional algebras; in fact, even a nontrivial example is not...

متن کامل

On iterated almost ν-stable derived equivalences

In a recent paper [5], we introduced a classes of derived equivalences called almost ν-stable derived equivalences. The most important property is that an almost ν-stable derived equivalence always induces a stable equivalence of Morita type, which generalizes a well-known result of Rickard: derived-equivalent self-injective algebras are stably equivalent of Morita type. In this paper, we shall...

متن کامل

Representation Type and Stable Equivalence of Morita Type for Finite Dimensional Algebras

In this note we show that two nite dimensional algebras have the same representation type if they are stably equivalent of Morita type. Stable equivalences of Morita type were introduced for blocks of group algebras by Brou e 2], see also 7]. The concept is motivated by a result of Rickard. In 9], he proved that any derived equivalence between nite dimensional self-injective algebras and ? indu...

متن کامل

A Note on Stable Equivalences of Morita Type

We investigate when an exact functor F ∼= − ⊗Λ MΓ : mod-Λ → mod-Γ which induces a stable equivalence is part of a stable equivalence of Morita type. If Λ and Γ are finite dimensional algebras over a field k whose semisimple quotients are separable, we give a necessary and sufficient condition for this to be the case. This generalizes a result of Rickard’s for self-injective algebras. As a corol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003